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U-Pb ZIRCON CONSTRAINTS ON THE TECTONIC EVOLUTION OF
SOUTHEASTERN TIBET, NAMCHE BARWA AREA

AMANDA L. BOOTH#*, PETER K. ZEITLER**, WILLIAM S.F. KIDD***,
JOSEPH WOODEN#*#*#% YUPING LIU**##* BRUCE IDLEMAN**,
MICHAEL HREN*, and C. PAGE CHAMBERLAIN*

ABSTRACT. The eastern syntaxis of the Himalayas is expressed in the crust as a
pronounced southward bend in the orogen. The change in strike of geologic features
coincides with the high topography of the Namche Barwa region, the exposure of
granulite-grade metamorphic rocks, and a 180-degree bend in the Yalu Tsangpo. We
have conducted a geochronologic and geochemical investigation of several suites of
granitoids collected from the Namche Barwa massif and subjacent terranes of south-
eastern Tibet, ranging from cm-scale dikes and sills to larger, outcrop-scale intrusions.
U-Pb SHRIMP-RG zircon ages establish at least five magmatic episodes: ~400 to 500
Ma, ~120 Ma, 40 to 70 Ma, 18 to 25 Ma, and 3 to 10 Ma. These episodes broadly
correlate to spatial patterns in sample localities, as follows: 400 to 500 Ma ages occur in
zircon cores collected from within the massif proper; ~120 Ma granites, related to
early Gangdese arc plutonism, are primarily located northeast of Namche Barwa; later
(40 - 70 Ma) Gangdese activity is expressed in granites west of Namche Barwa. 18 to 25
Ma granites occur both along the suture zone west of Gyala Peri, and directly north of
Namche Barwa along the area of the Jiali fault zone, and are attributed both to
shearing within the Jiali fault zone and to an early Miocene Gangdese Thrust event.
Exceptionally young (<10 Ma) zircon ages are clustered near the core of the massif,
along the Yalu Tsangpo gorge. Trace-element geochemical data indicates the presence
of both fluid-present and fluid absent melts, with a fluid-absent (decompression)
melting regime dominating near the core of Namche Barwa.

INTRODUCTION

Spatial and temporal patterns among Himalayan granites have been critical for
reconstructing the tectonic framework of the India-Asia collision. Granite production
and emplacement can be indicative of numerous different lithospheric melting
regimes dominating within an area, such as decompression melting, shear heating,
dehydration melting, et cetera (for example, Le Fort, 1975, 1981; Debon and others,
1985; Le Fort and others, 1987; Zeitler and Chamberlain, 1991; Harris and Massey,
1994; Scaillet and others, 1995; Harrison and others, 1998). Tectonic processes
attributed with producing Himalayan crustal melts include syn-orogenic extension
(Molnar and others, 1993; Fielding, 1996; Edwards and Harrison, 1997; Harrison and
others, 1997a; Murphy and Harrison, 1999), fluxing by volatiles during thrusting along
the Main Central Thrust (Le Fort, 1981; Le Fort and others, 1987), decompression
melting during rapid denudation (Zeitler and others, 1993; Winslow and others, 1995;
Whittington and Treloar, 2002), slab break-off (Miller and others, 1999; Chemenda
and others, 2000; Yin and Harrison, 2000; Maheo and others, 2002; Kohn and
Parkinson, 2002), continental subduction (Meyer and others, 1998; Wang and others,
2001), slab roll-back (Ding and others, 2003), slab detachment (Kosarev and others,
1999; Tilman and others, 2003), and subduction of remnant oceanic lithosphere
(Murphy and Yin, 2003). Shear heating during strike-slip motion along the Red River
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fault, southeast of Tibet, has also been ascribed with producing partial melts (Schéarer
and others, 1994; Leloup and others, 1995).

Southeastern Tibet is an area that remains sparsely studied with respect to its
tectonic evolution, particularly its deeper structure and igneous history. Many features,
however, can be readily observed that suggest a complex series of tectono-magmatic
events has helped to shape this region, including: (1) The eastern syntaxis is expressed
in the crust as a clear bend in the topographic, structural, and geological trends,
particularly the Indus-Tsangpo Suture Zone (ITSZ) and the High Himalayan Crystal-
line belt; and (2) Embedded within the eastern syntaxis is an antiformal basement
massif, Namche Barwa, where the deep gorge of the Yalu Tsangpo exposes ~7000
meters of actively deforming metamorphic rocks and granites as young as Pleistocene
in age (Burg and others, 1997; Zeitler and others, 2001a).

This study deals with granitic melts present on a variety of scales in the eastern
Himalayan syntaxis and southeastern Tibet. The results of our study suggest a complex
tectonic history for southeastern Tibet, including at least five magmatic episodes and
the production of both fluid-saturated and undersaturated melts.

GEOLOGIC AND TECTONIC OVERVIEW

An important element of understanding the tectonics of Southeast Asia is tracing
the assembly of Tibet itself. Tibet proper consists of terranes accreted successively to
the southern margin of Eurasia (Dewey and others, 1988; Murphy and others, 1997;
Yin and Harrison, 2000; Kapp and others, 2003a, 2003b). The southernmost of these
terranes is the Lhasa block, which originated by rifting from Gondwana in the late
Paleozoic and was sutured to Asia by a late Jurassic-early Cretaceous collision (~140
Ma). Subsequently, the southern Lhasa block was the site of an Andean-type magmatic
arc until the India-Asia collision began in the Eocene. To the south, the Lhasa block is
separated from rocks of Indian affinity in the Tethyan Himalaya by the ophiolitic ITSZ.
The suture has been structurally modified, most likely by the south-directed Gangdese
Thrust System (GTS; Yin and others, 1994; Harrison and others, 2000) and by back
thrusts of the north directed Renbu Zedong Thrust System (RZTS; Yin and others,
1994, 1999; Ratschbacher and others, 1994; Quidelleur and others, 1997). Some
workers, however, have interpreted the Gangdese thrust to be an unconformity, rather
than an actual structure (that is, Aitchison and others, 2003).

The eastern Himalayan syntaxis represents a broad region over which structural
trends in southeastern Tibet and the Himalayan orogen turn from E-W to N-S striking.
This syntaxis is also evident in the trends of surface features such as major river valleys
located along strike-slip faults (Hallet and Molnar, 2001), and overall the syntaxis likely
reflects several generations of structural events along the eastern edge of the Indian
plate, including Miocene extrusion tectonics (Wang and Burchfiel, 1997), and ongo-
ing clockwise rotations (Burchfiel and others, 1998).

Near the peaks Namche Barwa and Gyala Peri, the eastern Himalayan syntaxis
exposes both Indian and Asian continental components separated by a deformed ITSZ
(fig. 1). The Gangdese or Transhimalayan Plutonic Belt (formerly part of the Asian
plate margin) consists of Cretaceous and Paleogene calc-alkaline plutons intruded into
Paleozoic and Mesozoic metasediments, and wraps around the antiformal Namche
Barwa metamorphic massif (Zhang and others, 1992; Burg and others, 1997). Around
much of the syntaxis, a mylonitic zone separates the Transhimalayan rocks from the
core of Indian basement gneisses. Serpentine lenses and abundant amphibolites
within this zone suggest that this boundary is the eastern continuation of the ITSZ, with
remnants of meta-ophiolites separating Asian from Indian plate rocks (Zhang and
others, 1992; Burg and others, 1997). A distinctive belt of metasedimentary rocks
(dominantly quartzites and pelites, with some calc-silicates), thought to be a more
deformed and metamorphosed equivalent of the Tethyan Himalaya, also form part of
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Fig. 1. Tectonic sketch map of southeastern Tibet, after Ding and others (2001). Location of fig. 2
shown in box. GTS = Gangdese Thrust System, RZTS = Renbu Zedong Thrust System, STDS = South
Tibetan Detachment System, ITSZ = Indus Tsangpo Suture Zone, MCT = Main Central Thrust, MBT =
Main Boundary Thrust, NB = Namche Barwa. Regional geographic location of Namche Barwa shown in
inset. NBS = Namche Barwa Syntaxis, NPS = Nanga Parbat Syntaxis.

this zone of highly strained rocks. Medium to high-grade metamorphic rocks (presum-
ably derived from Indian Basement rocks) make up the core of the syntaxis and were
once structurally below the Transhimalayan Plutonic Belt. They are dominantly
migmatitic gneisses of Proterozoic initial age (Zhang and others, 1992; Burg and
others, 1997). According to Liu and Zhong (1997), they can be divided into a granulite
group in the north and an amphibolite group in the south, with the former thrust over
the latter by the Namula thrust system.

A number of granitoids with distinctly different means of formation occur within
or near the eastern syntaxis. We briefly review the main types of granitoids that have
been reported from the region to date.

Namche Barwa Massif.—In the core of this massif, granitic dikes and sills intrude
Indian Basement gneisses on a range of scales. Burg and others (1998) reported
leucogranite and pegmatite dikes in the Namche Barwa syntaxis, including leucosomes
that crosscut metamorphic layering in the pelitic gneisses. This structural relationship
indicates that anatexis has outlasted the main fabric development in the core of
Namche Barwa. Single crystal U-Th-Pb analyses on zircon, xenotime and thorite by
Burg and others (1997) provide leucosome crystallization ages ranging between 2.9
and 3.9 Ma, with a protolith age of 484 = 3 Ma. Ding and others (2001) reported U-Pb
zircon ages as young as ~11 Ma from mafic granulites and two-mica-bearing leuco-
somes within the massif’s core. A cluster of ages at ~65 Ma likely crystallized during
Andean-type Gangdese magmatism, while a younger (~40 Ma) cluster is interpreted to
have crystallized during fluid-present, high-grade metamorphism during the early
stages of India-Asia collision. The youngest, 11 to 25 Ma, zircon ages are attributed to a
later high-grade metamorphic event, possibly related to decompression melting dur-
ing rapid exhumation.

Nanga Parbat massif.—In the western Himalayan syntaxis, decompression melting
has been invoked for the formation of leucogranites that intrude the Nanga Parbat
massif (Zeitler and Chamberlain, 1991), due to the temporal coincidence of exhuma-
tion and melting. In addition to fluid-absent (decompression) melting, fluid-present
melts have been documented at Nanga Parbat. The concurrence of both types of melt
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reaction is attributed to a change from fluid-absent anatexis in the mid-crust (~20 km
depth) to fluid infiltration in the upper crust (~10 km depth) (Whittington and
others, 1999). These granites are among the youngest documented in the Himalayan
system, at 1 to 3 Ma (Zeitler and Chamberlain, 1991).

Himalayan leucogranites.—Tertiary magmatism within the Himalaya proper is
largely confined to two parallel granite belts, the High Himalayan Leucogranites and
the North Himalayan Granites (Harrison and others, 1997b). A commonly prescribed
model for Himalayan leucogranite genesis involves fluid advection from the dehydrat-
ing footwall into the relatively hot hanging wall, along major fault systems such as the
Main Central Thrust (Le Fort, 1981; Le Fort and others, 1987). Improved knowledge
of granite crystallization ages (Edwards and Harrison, 1997; Harrison and others,
1997a) suggests a different model, relating the formation of Miocene leucogranites to
syn-orogenic extension on the South Tibetan Detachment System (STDS) around 20
Ma. This model assumes that the primary cause of melting is decompression during
exhumation south of the STDS (Hodges and others, 1992; Harris and Massey, 1994).
In southeastern Tibet, Miocene partial melts and late Eocene K-rich magmas have
been attributed to simultaneous shear heating and rapid erosion (for example,
Harrison and others, 1998) during coeval slip along the MCT and STDS. An alternative
slab break-off model (Chemenda and others, 2000; Yin and Harrison, 2000; Kohn and
Parkinson, 2002) has been proposed to explain the Miocene leucogranites, based on
the occurrence of rare Eocene eclogites in southeastern Tibet. This model assumes
subduction of Greater Himalayan crustal rocks to ~100 km depth in the Eocene
followed by buoyant rise after decoupling from the mantle lithosphere.

Gangdese Arc.—]Just to the north of the ITSZ is the Transhimalayan plutonic belt, a
semi-continuous 2600-km-long batholith with rocks ranging in composition from
gabbro to granite (Debon and others, 1986). In the proximity of the Namche Barwa
syntaxis, this belt is represented by the Gangdese batholith, forming the root of the
Gangdese magmatic arc that developed as a consequence of northward subduction of
Neo-Tethys oceanic crust (Hodges, 2000, and references therein). Diorites and grano-
diorites from the eastern section of the Gangdese batholith yield geochronologic ages
between 113 + 2 Ma (*°Ar/*’Ar method on amphiboles; Maluski and others, 1988)
and 41.1 £ 0.4 Ma (U/Pb method on zircons; Scharer and others, 1984). There is a
wide variety in composition (thatis, Debon and others, 1986), but no clear relationship
between chemistry and age of plutonism (Scharer and others, 1984).

Red River shear zone.—East of the Namche Barwa syntaxis, documented magmatism
is associated with ductile deformation and high-grade metamorphism along the Red
River shear zone (Schérer and others, 1990, 1994; Harrison and others, 1992; Leloup
and Kienast, 1993; Leloup and others, 1993, 1995; Chung and others, 1998; Wang and
others, 2001). Partial melts in the Red River shear zone coeval with ductile deforma-
tion yield ages of 22 to 23 Ma and geochemical data indicate anatexis at 20 to 15 km
depth, with crustally derived mantle affinities (Zhang and Scharer, 1999).

Early Miocene melts, southern Tibet.—Two types of magmatism are documented in
areas of southern Tibet from circa 25 to 10 Ma, those of ultrapotassic composition and
of calc-alkaline composition (Coulon and others, 1986; Yin and others, 1994; Turner
and others, 1996; Miller and others, 1999; Williams and others, 2001). These “postcol-
lisional” magmas occur as small intrusive and extrusive bodies located west of Lhasa
city. Recently, calc-alkaline magmas emplaced from circa 26 to 10 Ma have also been
reported in the areas around Xigaze and east of Lhasa city (Chung and others, 2003),
which exhibit geochemical signatures characteristic of adakites, lavas previously found
only in subduction zones. Chung and others (2003) believe them to represent the first
example of adakites produced in a modern continental collision setting, resulting
from melting of thickened Tibetan lower crust, induced by removal of lithospheric
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mantle in late Oligocene time. Murphy and Yin (2003), however, suggest that postcolli-
sion (Oligocene/Miocene) high-K, calc-alkaline magmatism along the southern mar-
gin of the Lhasa block may be attributed to late subduction of remnant Neo-Tethyan
oceanic crust, producing magmatism.

Himalayan Paleozoic ages.—Le Fort and others (1980) first reported Paleozoic ages
(516 = 6 Ma; whole rock Rb/Sr method) on the Manshera granite in Pakistan. Recent
work in the central Himalayas (Gehrels and others, 2003) also documents the
existence of ~470 to 485 Ma granitic intrusions (U-Pb method on zircons) within
Greater Himalayan metasediments, reflecting initiation of the Himalayan orogen
along an early Paleozoic thrust belt. This age range is also supported by numerous
~480 to 500 Ma U-Pb zircon ages (Ferrara and others, 1983; Trivedi and others, 1984;
Le Fort and others, 1986; Hodges and others, 1996; DeCelles and others, 1998, 2000;
Miller and others, 2001) from cross-cutting granitic plutons and orthogneisses within
Greater Himalayan rocks.

METHODS

Samples.—During September-October 2001 and May-June 2002 field seasons, our
samples were gathered from five principal areas, and can be grouped as follows: [A]
within the Namche Barwa massif (fig. 2) — from granitic dikes and migmatites
intruding Indian plate gneisses and metasediments; [B] along the northwest margin of
the Namche Barwa-Gyala Peri (NB-GP) massif — from granitic intrusions into both
Lhasa block and Indian plate gneisses and metasediments; [C] substantially west of the
NB-GP massif, spread out from Loulan toward Bayi, and along the Nyang River —
intruding Lhasa block gneisses and metasediments; [D] north of Namche Barwa, along
the inferred location of the Jiali Fault zone — from intrusions into Lhasa block gneisses
and metasediments; and [E] northeast of Namche Barwa near the Jiali Fault zone —
from presumed Gangdese plutonic rock of granodioritic compositions.

Group A samples, collected from within the Namche Barwa massif proper, are 20
to 300 cm-thick dikes and sills that intrude amphibolite to granulite grade Precam-
brian gneisses. Samples 1G-2d, IG-4, and IG-6b were collected along the upper inner
gorge of the Yalu Tsangpo (fig. 2), along a traverse from Jiala to Zhibei. Sample 1G-2d
(fig. 3) represents a deformed felsic melt pod within a 100-meter amphibolite section
near Jiala. Sample 1G4 was collected from an ~3-meter leucocratic pegmatite dike that
locally crosscuts and elsewhere is sheared concordantly into the foliation. Sample
I1G-6b was collected from a felsic crosscutting dikelet (~20 cm) within a small biotite
gneiss outcrop exposed along the trail from Zhibei to Jiala, just northeast of Zhibei.
Sample IG-15a was collected from a granitic sweat within the gneisses, along a road cut
just to the east-northeast of Pai. Sample IG-16 was collected from a K-feldspar-bearing
banded migmatite exposed along a jeep road from Pai to Duoxiong La, on the
northwest side of Duoxiong La pass. Sample IG-18 was collected as float from an ~4 m,
coarse-grained granitic boulder halfway to the top of Duoxiong La pass. The source of
this boulder, however, was clearly from a large granite sill visible in the headwall above.
We therefore justify the sampling of float in the case of IG-18, by asserting that the
source rock is very well constrained.

Group B samples were collected along the northwestern margin of the NB-GP
massif, and represent granite and pegmatite dikes intruding basement gneisses of both
Lhasa block and Indian Plate origin. Samples BT-14, BT-15, BT-17 (fig. 4), BT-19, and
BT-20 were collected from a section within the De’u Gungbu Valley (fig. 5), along an
E-W traverse across the brittlefaulted western margin of the NB-GP massif (including
the modified and very narrow Indus-Tsangpo suture zone). Within this group, BT-14 is
a granitic gneiss, BT-15 represents a leucocratic pegmatite dike cross-cutting the Lhasa
Block basement gneisses, BT-17 is a medium-grained granite dike from the western-
most edge of the Gyala Peri massif, cross-cutting the amphibolites near a brittle fault
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Fig. 3. Sample IG-2d — Deformed felsic melt pod (~50 cm across) within amphibolite section near Jiala.

zone, BT-19 is a syntectonic foliated muscovite-bearing granite east of the S/C
mylonite zone, and BT-20 is a S/C mylonite with coarse augen. North of this traverse,
BT-07 and NB-35-02 were collected near Dongjiu, from a garnet granite cutting Lhasa
block gneisses and a granite cutting Lhasa metasediments, respectively.

Group C samples were collected from a large area west of the NB-GP massif.
Sample NB-159-02 was collected from Lhasa block basement granitic gneiss near
Loulan. Samples NB-120-02, BT19E, BT20E, BT-4-01 are spread out to the west of the
NB-GP massif, in the general vicinity of Bayi and along the Nyang River. These, along
with samples BT-36 and BT-37 (located considerably west, off the map, along the road
to Lhasa from Bayi) most likely represent outcrops of Gangdese Arc granitoids.

Group D consists of two samples, BT-33 and BT-17-01 (2001 field season),
collected from roughly north of the Namche Barwa massif, near Tungmai, in the area
of the Jiali fault zone. Both represent granitic dikes intruding Lhasa Block metasedi-
ments of medium grade.

Group E samples were collected from northeast of Namche Barwa, in the vicinity
of Bomi. Samples BM-02 and BM-03 represent Gangdese plutonic rock and were
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Fig. 4. Sample BT-17-02 — Pegmatite dike cross-cutting basement gneisses, De’u Gungbu section,
western margin of Gyala Peri massif.

collected from a granodiorite and a granite pegmatite dike, respectively, between
Medog and Bomi. Samples BC-01, BC-02, and BC-03 are also Gangdese granitoids,
collected along the main road to Qamdo and Chengdu, east of Bomi.

Mapping procedures.—The map (fig. 2) is based on the work of our Chengdu
colleagues (Geng and others, 2002), modified and extended using observations made
during our field work. Portions of original maps by Zhang and others (1992) and Burg
and others (1997, 1998) for the eastern part of the syntaxis are also incorporated into
figure 2.

Analytical techniques and considerations.—At the Stanford — U.S. Geological Survey
Mass Analysis Center, we determined SHRIMP-RG (Sensitive High-Resolution Ion
Microprobe — Reverse Geometry), U-Pb ages for all of the samples in this study. Zircons
were separated using standard techniques of crushing, grinding, and heavy liquid and
magnetic separation. Analyzed zircon fractions were primarily composed of clear,
euhedral grains, and consistently exhibited one of two morphologies: elongate prisms
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Fig. 6. Cathodoluminescence (CL) images of representative zircons from each sample group: (A)
Namche Barwa (IG-16), (B) Northwest margin of NB-GP massif (BT-20), (C) Western Gangdese and related
granitoids (NB-120), (D) North of Namche Barwa group (BT-33), and (E) Northeastern granites (BM-03),
all showing strong zoning patterns.

or stubby prisms. Mineral coloring was honey yellow to light pink, with occasional
inclusions of quartz, feldspar and biotite. Zircons from all sample groups were strongly
zoned, and exhibited distinct cores with complicated overgrowths (fig. 6).

For each sample, separates were mounted in epoxy and polished to approximately
half the mean grain thickness, then imaged with reflected light and cathodolumines-
cence to illuminate internal zoning. The mounts were coated with gold for analysis and
each sample was sputtered by using a primary beam of O ions with a spot size of ~25
pm. Counts of Zr,O, 204pp, background, 206p, 207Pb, 208pp, 238y, 248ThQ, and U0
were measured from the secondary beam. Analytical and data reduction procedures
followed those given in Williams (1998). For age standardization, concentrations of
uranium and thorium from standard zircons SLL13 and CZ3 were used. U/Pb ratios
were determined through replicate analyses of standard zircons R33 (418 Ma) and
AS5H7 (1099 Ma), and ages were based on the measured 206pp /2380 ratio calibrated to
the °°Pb/***U ratio in the AS57 standard. The Pb/U ratio in the standard typically
exhibited a calculated external spot-to-spot error of ~2.0% (20). All reported ages
were determined using the data-reduction program Squid (Ludwig, 2001). Common
Pb corrections were made using the two-stage average crustal Pb model of Stacey and
Kramers (1975). Analyses yielding ages greater than 1000 Ma we corrected by using



of southeastern Tibet, Namche Barwa Area 899

measured 2°*Pb, while younger ages were corrected using measured 2°’Pb. Because
our samples are primarily young (Mesozoic and younger), Tera-Wasserburg concordia
plots are chosen as the most appropriate to display the analytical data (figs. 6-10).

Major and trace element analyses for 37 Namche Barwa area granites were
obtained by employing conventional XRF (X-ray fluorescence) spectrometry at the
Washington State University GeoAnalytical Laboratory. Of these, three samples (BT14-
02, BT19E-02, NB02-159) included weathered pieces in those that were ground for
analysis. All had good XRF totals, however, indicating that the amount of late-
alteration hydrous material was not significant.

RESULTS

Geochronology.—Our new U-Pb zircon ages place significant constraints on the
timing of granitic melt generation in the Namche Barwa and adjacent regions.
Analytical results (table 1) are shown on Tera-Wasserburg concordia plots in figures 7,
8,9, 10 and 11. The majority of the ages are concordant, with some older, slightly
discordant ages resulting from inheritance, as would be expected from crustally-
derived partial melts.

As the scope of our study is focused primarily on correlations between age and
location, we emphasize that the procedures used for age assignments are not statisti-
cally rigorous, such as a more precise age-focused study would be. The wide range of
the determined ages allows us to make groupings based on spatial trends; these groups
are distinct from each other, and do not overlap within a 95 percent confidence
interval. )

Final ages were assigned using the weighted mean 207-corrected **°Pb/***U age
of a coherent group, discounting points that showed abnormally high U, high 2**Pb, or
discordance. The assigned age for each sample is presented with its concordia
diagram, along with the age error (20), number of analyses, and mean square of
weighted deviates (MSWD) for the coherent group. Values of MSWD greater than one
are indicative of errors beyond those strictly associated with analytical errors, and
suggest geologic errors such as outliers or samples from more than one population are
contributing to the overall age range. In samples where distinct core and rim
populations were present, the final age always represents the rim age; core ages are
plotted separately on a collective diagram, one per sampling group. Coherent age
groups were extracted using a minimum 5 percent probability-of-fit, and a minimum
30 percent fraction of the total analyses to constitute a valid age group. In cases where
no coherent age group was apparent, the age we present is an inferred age, chosen to
be the most likely crystallization age for that sample based on the available data points.
Because we are focusing primarily on the broad tectonic implications of these zircon
ages, inferred ages are treated with equal consideration in our conclusions. The ages
exhibit ranges that are geographically distinct, as can be seen in figure 2, and
correspond to the five principle sampling groups previously outlined:

[A] For samples from within the Namche Barwa massif, five U-Pb SHRIMP ages
fell between 2.9 and 9.7 Ma (fig. 7). Concordant core ages cluster around 400 to 500
Ma and 800 to 900 Ma. Details of each sample are as follows:

For sample IG-2d, 11 rim spots and 11 core spots were analyzed. Of the 11 rim
ages, no coherent age group was apparent; several of these ages are a likely reflection
of mixing between rim and core compositions; however, six ages fall between 13 and 15
Ma. The age presented (~14 Ma) is an average of these six ages, and is therefore
approximate. In sample IG-4, 9 spots were analyzed; all were rim ages. The coherent
age group was comprised of 4 spots, yielding a final (weighted mean) age of 3.0 Ma. In
sample IG-6b, 10 rim spots and 7 core spots were analyzed. 9 rim ages comprised a
coherent group, with a weighted mean of 9.7 Ma. In sample IG-15a, 10 rim spots and 4
core spots were analyzed. Both core and rim spots, however, yielded the same age
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Fig. 7. Tera-Wasserburg concordia diagrams showing U-Pb SHRIMP ages for group A samples — from
within the Namche Barwa massif. Error ellipses are shown at 20 uncertainty. Older zircon core ages are
shown, where applicable, for all samples on composite Concordia plot.

range (5 — 8 Ma). 13 analyses comprised a coherent age group, with a weighted mean
of 6.2 Ma. In sample IG-16, 9 rim spots and 4 core spots were analyzed. Of the 9 rim
ages, 6 comprised a coherent group with a weighted mean of 4.3 Ma. In sample IG-18,9
rim spots and 10 core spots were analyzed. Some rim spots yielded ages as old as the
cores, and many were discordant. Five rim ages, however, formed a coherent (young)
age group with a weighted mean of 2.9 Ma.

[B] Along the northwestern margin of the NB-GP massif, the zircons are primarily
Oligocene-Miocene in age (fig. 8), and were obtained from granitic bodies intruding
both Lhasa block basement and Indian plate gneisses. Zircon core ages from this
group show mostly Gangdese inheritance, except for sample BT-17, which exhibits
protolith ages upwards of 1 Ga (Lhasa block material). Sample BT-20 also exhibited a
Pan-African zircon rim age of 465 Ma.

Rim age populations for samples BT-14, BT-15, BT-17, BT-19, BT-20 and NB-35 all
contained a coherent group, from which the final age (weighted mean) was extracted.
BT-07 did not yield a coherent group, so the final age is approximate and equals the
average (40 Ma) of the three youngest analyses, which clustered between 38 and 42 Ma.

[C] West of the NB-GP massif, our results fall primarily into the age range of ~40
to 70 Ma (fig. 9), with one 26 Ma age observed in sample BT-4, collected near Nyingchi.
Another anomalous age (250 Ma — late Permian) was observed in sample BT-36,
farther to the west, between Bayi and Lhasa (not shown on map; 29°58'23.0"'N
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Fig. 7. (continued)

93°6'31.6''E). Sample BT-37 is also off the map (29°43'00.4''N 93°2'22.4"'E), but
yields a more-expected age of 72 Ma. Limited core ages for group C samples (660 Ma
and 300 Ma for BT-4; 520 Ma and 97 Ma for BT-19E) suggest a Gondwanan protolith,
plus some mixing between core and rim compositions.

All Group C samples had rim age populations that yielded coherent groups. Final
ages, presented on figure 9, represent the weighted means of each of these groups.

[D] Two samples, BT-17-01 and BT-33, collected north of Namche Barwa along
the Jiali fault zone yield 21 Ma ages (fig. 10). Core ages show evidence for a Gangdese
protolith (74 Ma for BT-33; 100 Ma for BT-17-01). Rim ages for both samples exhibit a
fair amount of scatter and did not possess a coherent age group; consequently these
final ages are approximate. However, sample BT-17-01 shows a distinct cluster (N=11)
of ages between 19 and 23 Ma, and BT-33 has a cluster (N= 5) between 20 and 22 Ma,
allowing us to place reasonably good constraints on these approximations.

[E] Northeast of Namche Barwa, in the vicinity of Bomi, the zircon populations
are as old as Mesozoic (113 - 118 Ma) in age (fig. 11), with one 63 Ma age. These
samples (BM-02, BM-03, BC-01, BC-02, and BC-03) exhibited no distinct evidence of
inheritance, and each age population yielded a coherent group. Final ages represent
the weighted means of these coherent groups, and are expressed on figure 11.

Geochemistry.— All samples have bulk compositions within the range typical of
peraluminous granites, consisting of quartz (20 - 35%), plagioclase (15 - 25%),
K-feldspar (25 - 40%), and muscovite = biotite (2 - 10%). Namche Barwa (Group A)
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Fig. 8. Tera-Wasserburg concordia diagrams showing U-Pb SHRIMP ages for group B samples — from
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granitoids are characterized by high silica content (table 2), with 70 to 79 weight
percent SiO,, Al,O4 > 12.0 weight percent, and are metaluminous to slightly peralumi-
nous (molar Al,O3/(CaO + Na,O + K,O) ratios between 0.96- 1.08). Rb/Sr ratios are
high for this group (fig. 12), relative to granitoids outside the massif, with an average
ratio of 3.8. Granitic bodies outside of the massif, north and west of Gyala Peri and
northeast of Namche Barwa (Groups B, C, D, and E), are predominantly peraluminous
and have notably lower Rb/Sr ratios.

Bulk geochemical abundances of the trace elements Rb, Y, and Nb indicate that
the majority of the granites are calc-alkaline to alkaline, plotting in the field of volcanic
arc granites (fig. 13) of Pearce and others (1984) and in the “post’-collision granite
field of Pearce (1996).

INTERPRETATION

Our study encompasses a series of granitic bodies that vary in their geochemistry
and emplacement age, and occur within differing tectonic terranes. These granitoids
are grouped as follows: [A] those intruded into Indian gneisses of Namche Barwa; [B]
intruded into Lhasa block and Indian plate metasediments along the northwest
margin of the NB-GP massif; [C] Gangdese Arc and related granitoids intruded into
Lhasa block metasediments considerably west of the NB-GP massif; [D] intruded into
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Lhasa block gneisses and metasediments north of Namche Barwa, near the Jiali fault
zone; and [E] Gangdese Arc granitoids intruded into Lhasa block gneisses and
metasediments northeast of Namche Barwa. We interpret the emplacement of these
five groups of granites to be related to a series of different tectonic events impacting
southeastern Tibet during Mesozoic-Cenozoic time.

Geochronology.—Our results for granite emplacement ages from Group A samples
(Namche Barwa massif) are in good agreement with those reported by both Burg and
others (1997) and Ding and others (2001), and support the evidence for exceptionally
recent granitic activity near the massif core. Previously determined ages (Burg and
others, 1997; Ding and others, 2001) combined with the results of this study define a
distinct group of young crystallization ages for Namche Barwa massif samples. Also
apparent is a well-defined population of 400 to 500 Ma core ages, possibly reflecting an
event of regional high-grade metamorphism and melting during early Paleozoic time.
Such evidence lends additional support to the concept of an early Paleozoic thrust
event within Greater Himalayan rocks, as suggested by the studies of DeCelles and
others (2000) and Gehrels and others (2003), and could indicate that Namche Barwa
massif rocks may have undergone a similar history.

Group B samples (northwest margin of the NB-GP massif) contain protolith ages
that help to delineate the ITSZ west of Gyala Peri. Within this transect across the suture
(fig. 5), younger granitoids are present with ages of 24 Ma, but core ages indicate
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Fig. 9. Tera-Wasserburg concordia diagrams showing U-Pb SHRIMP ages from group C samples — from
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inherited signatures that jump sharply from Gangdese in the west (67 Ma for BT-14
and 82 Ma for BT-15) to Indian in the east (“Pan-African” age of 465 for BT-20).

Group C samples (west of Namche Barwa) exhibit a cluster of crystallization ages
between 40 to 70 Ma, corresponding to Gangdese plutonism. Sample BT-36, however,
yielded a crystallization age of 250 Ma, which is not a surprising result, considering
Permian rift-related rocks have been documented in the southern Lhasa block (Dewey
and others, 1988).

Group E samples (northeast of Namche Barwa) contain numerous ages that
correspond to Gangdese plutonism. Two isolated 21 Ma ages (Group D) in the north,
however, are too young to be related to this subduction-related magmatism. Consider-
ing the widespread documentation of magmatism along the Red River shear zone (for
example, Leloup and Kienast, 1993; Zhang and Scharer, 1999), and partial melts with
emplacement ages around 22 to 23 Ma, the 21 Ma granitoids may be analogous to these
melts. However, because these and similar other dikes consistently cut the ductile
foliation of the gneisses in and near the Jiali fault zone, these granitic bodies are not
likely to be a product of the shearing related to movement within this zone. Instead, we
suggest they are perhaps related to the Gangdese Thrust event, which is of this age
(~27 - 18 Ma) and involved underthrusting of part of the Gangdese belt (Copeland
and others, 1995; Yin and others, 1999; Harrison and others, 2000). The role of the
Gangdese Thrust, however, is controversial (that is, Aitchison and others, 2003).
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Fig. 9. (continued)

Therefore, an alternative means of production for the ~21 Ma granites might be slab
break-off or slab detachment. Both of these mechanisms are suggested to have
occurred at ~25 Ma (Kosarev and others, 1999; Miller and others, 1999; Chemenda
and others, 2000; Yin and Harrison, 2000; Maheo and others, 2002; Kohn and
Parkinson, 2002; Tilman and others, 2003).

Opverall, in addition to the expected evidence for activity related to the Gangdese
Arc, there is clear evidence in our results for a widespread partial-melting event around
20 to 25 Ma, and a much-younger (3 - 10 Ma) melting episode observed only at Namche
Barwa. Geochemical data from the granites provides some insight as to the nature of
these two young events.

Geochemistry.—Granitoids from within Namche Barwa exhibit a high Rb/Sr ratio
(greater than 1.4), with notably greater frequency than outside the massif (fig. 12). It
has been shown (Harris and others, 1993; Whittington and others, 1999) that trace
element abundances in granitic rocks can provide information regarding the condi-
tions prevalent during melting. A study by Harris and Inger (1992) predicted the
consequences of fluid-present and fluid-absent melting for the composition of pelite-
derived granites, in terms of the trace elements Rb, Sr and Ba. For granite systems, only
these three elements reside predominantly in the major reactants and products of
melting reactions (micas and feldspars). Concentration ratios (C,/C,) in the liquid
relative to the source are calculated from appropriate partition coefficients (Kp) for
granitic melts, using a range of values from Nash and Crecraft (1985), Blundy and
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Fig. 10. Tera-Wasserburg concordia diagrams showing U-Pb SHRIMP ages for group D samples — from
north of the Namche Barwa-Gyala Peri massif. Error ellipses are shown at 20 uncertainty. Older zircon core
ages are shown, where applicable, for all samples on composite Concordia plot.

Wood (1991), and Harris and others (1993). Simple melts have well-defined C;/C,
ratios for Rb, Sr and Ba, whether controlled by mineral fractionation or by partial
melting (Whittington and others, 1999). Fluid-present melting results in low Rb/Sr
ratios and depleted Ba relative to the source, whereas fluid-absent melting results in
high Rb/Sr ratios and enrichment of Ba. Geochemical modeling of Rb and Sr during
anatexis suggests that fluid-absent breakdown of muscovite would produce melts with
Rb/Sr ratios >1.5 (Harris and Inger, 1992).

The majority of the Namche Barwa samples (group A) exhibit relatively high
Rb/Sr ratios (>1.4) suggesting that a fluid-absent melting (decompression) regime
dominates near the massif core. Meanwhile, granitoids from groups B, C, D and E
exhibit Rb/Sr ratios consistently below 1.5 (table 2) and imply fluid-present melting in
these surrounding regions.

A particularly interesting result is that the Namche Barwa granites with the
youngest U-Pb zircon ages (3.0 Ma and 2.9 Ma, samples I1G-4 and IG-18) exhibit a low
Rb/Sr ratio, implying a fluid-present melting history. This result has implications for
both the rate of melt emplacement and the degree of meteoric water circulation at
Namche Barwa. Moreover, the presence of both fluid-absent and fluid-present melts is
significant, as it resembles conditions at Nanga Parbat in the western Himalayan
syntaxis. At Namche Barwa, the predominance of fluid-absent “decompression” melts
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could be a reflection of numerous varying parameters: (1) the sample locality bias—it
is considerably more difficult to collect samples from the core of the massif as opposed
to the lower-elevation flanks; (2) the uplift rate—if it were sufficiently rapid every-
where, only rarely could assemblages be preserved that were allowed to cool above the
wet pelite solidus; (3) the degree of meteoric fluid circulation—how deep and how
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Fig. 12. Rb/Sr ratio vs. Ba (ppm) plot, showing the geochemical variation among sample groups. Fields
labeled by geographic grouping: (A) Namche Barwa massif granitoids (green horizontal lines), (B) NW
margin of NB-GP massif granites (blue vertical lines), (C) western Gangdese and related samples (purple
diagonal dashes), (D) Northern granites (orange crosshatch pattern), and (E) northeastern/Bomi region
granitoids (red wavy lines), data from table 2. Note the higher frequency of decompression melts (Rb/Sr
ratios > 1.4) among the group A (Namche Barwa) granite suite.

extensively meteoric water has pervaded the crust; (4) the level of metamorphism
previously experienced by rocks entering the massif—if they were low-grade and
fertile, fluid-present melting would dominate, as opposed to Nanga Parbat, where
rocks had undergone earlier high-grade metamorphism and were entering the massif
relatively dry; or (5) deformation coeval with emplacement of melts, enhancing fluid
infiltration—some samples show clear evidence of syn-kinematic emplacement and
foliation.

Tectonic discrimination of granites.—Southeastern Tibet is tectonically complex, but
trace-element modeling provides constraints on the dominant tectonic regime that is
reflected in the geochemistry of granitic melts. Trace-element geochemical analyses
indicate that the majority of the granites are calc-alkaline to alkaline, plotting in the
field of volcanic arc granites (fig. 13) of Pearce and others (1984) and in the
“post’~collision granite field of Pearce (1996). Pearce (1996) emphasized that the
collisional granites are the most difficult to classify on the basis of chemistry, as they
have the greatest range of sources. Unlike granites from other settings, collisional
granites cannot be explained and modeled by their trace element geochemical
behavior, in terms of a single, well-defined mantle or crustal source. They can result
from melting of the upper mantle due to adiabatic decompression that accompanies
collisional uplift and erosion (England and Thompson, 1984), and might plotin either
the volcanic arc or the within-plate field. In southeastern Tibet, volcanic arc activity is
clearly present north of the Namche Barwa syntaxis, but within the massif itself the
source of the melts is more ambiguous. Young zircon ages (<10 Ma) in the context of a
60 * 10 Ma Himalayan orogeny require that these melts are not related to early
thrusting and crustal thickening/shortening. The presence of decompression melts in
aregion that is being exhumed rapidly is also characteristic of later stages of collisional
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tectonic settings. Hence, the distribution of Namche Barwa granites on Pearce and
others’ (1984) tectonic discrimination diagram, spanning the volcanic arc and within
plate fields, is in accordance with our other data sets, specifically zircon ages, Rb/Sr
geochemistry and geological and tectonic settings.

Zircon core ages provide further constraints on the source area for these grani-
toids. For group A samples, U-Pb ages of predominantly 400 to 500 Ma, with some 700
to 800 Ma ages (table 1) imply an Indian plate precursor for the youngest melts.
Outside of Namche Barwa, most core ages are greater than 500 Ma, with the oldest
protolith ages (0.9 - 2.4 Ga) present in the northern and western granite groups. Lhasa
block material is the most likely source for these granites, but older metasediments or
Indian continental basement cannot be ruled out on this basis alone.

DISCUSSION

Namche Barwa granites.—The granites from Namche Barwa exhibit zircon U-Pb
ages consistently under 10 Ma and thus are distinct from those reported elsewhere in
the Himalayas. The young ages correspond to a period of rapid denudation at Namche
Barwa, estimated at ~10 mm/yr over the last 4 Myr (Burg and others, 1997).
Coincidence of young granites with a period of rapid erosion suggests a cause-effect
relationship, in particular a scenario involving decompression melting that mimics
Nanga Parbat in the western Himalayan syntaxis. Relatively high Rb/Sr ratios in the
Namche Barwa granites support a decompression melting regime similar to Nanga
Parbat, where rapid exhumation has led to leucogranite emplacement by fluid-absent
breakdown of muscovite (Zeitler and Chamberlain, 1991; Butler and others, 1997;
Whittington and others, 1999). Young activity and decompression melts are evidence
in favor of a “tectonic aneurysm” model (Zeitler and others, 2001a; Koons and others,
2002), attributing anatexis and high-grade metamorphism to rapid exhumation by the
Yalu Tsangpo.

Coupled thermal-mechanical-erosional modeling (Koons and others, 1998; Zeitler
and others, 2001b; Koons and others, 2002) shows that in a deforming orogen, local
rheological variations will arise from deep and rapid incision. The crust will weaken as
the strong upper crust is stripped from above by erosion and the local geotherm is
steepened from below by rapid uplift of hot rock. If this process occurs where the crust
is already weak, it will focus local upward movement of material from below. Provided
that efficient erosion continues, a positive feedback develops in which flow of material
into this weakened zone maintains local elevation and relief, reinforcing the concen-
trated exhumation and bowing up isotherms, further weakening the upper crust. This
focusing of strain and rapid exhumation leads to metamorphic and structural overprint-
ing of the crust as high-temperature lower crustal rocks are isothermally decom-
pressed, and also leads to development of large mountains of limited spatial extent
perched atop hot, weak crust. Itis this concentration of exhumation and redirection of
strain, with associated thermal, petrological, and geophysical anomalies, that Zeitler
and others (2001a) dubbed a “tectonic aneurysm,” in the sense of self-sustained failure
of a normally strong boundary. Inherent in this model is the notion that feedback can
amplify rather local geomorphic processes to the point where they exert a profound
influence on the metamorphic and structural evolution of rocks at considerable depth.
The emplacement of young melts near the core of Namche Barwa seems to support
this model.

Granites outside Namche Barwa.—Zircon core and rim ages from the E-W transect
across the western margin of Gyala Peri confirm the location of the suture zone
between Indian and Asian plate components. Paralleling the trend of several other
geological units and foliations, the attenuated suture wraps around just to the west of
the Gyala Peri massif. West of Gyala Peri, U-Pb ages of samples intruding Lhasa Block
basement exhibit a distinct cluster within 40 to 70 Ma, corresponding to Gangdese
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plutonism. However, the younger (<26 Ma) group in this area must be associated with
a more recent metamorphic event, possibly related to slip along the Gangdese thrust,
slab break-off, or slab detachment. Neogene magmatism in the Gangdese belt is
uncommon but has been identified in several places, with calc-alkaline magmatism of
Gangdese geochemical affinity documented at 18 to 16 Ma in southwestern Tibet
(Miller and others, 1999) and at 16 to 10 Ma in south-central Tibet (Coulon and
others, 1986). Samples BT-4, NB-35-02, BT-15, and BT-17 all yield U-Pb zircon ages
between 24 to 26 Ma, but do not exhibit a decompression melt signature and are
therefore unlikely to be related to an eastward continuation of the STDS. These
samples do, however, show volcanic arc affinity as per Pearce and others (1984) and
might represent young Gangdese-related magmatism. Harrison and others (2000)
proposed that a continuous process produced calc-alkaline Gangdese magmatism
through the Tertiary, caused by an input of heat from the asthenosphere. Through
such a mechanism, our 24 to 26 Ma granites could have been produced as collisional
melts, representing continued subduction of Indian lithosphere (Chung and others,
2003). Alternatively, slab break-off of the subducting Indian continental margin, or
slab detachment, whereby the mantle lithosphere peels off from the overlying crust
and passively sinks into the asthenosphere, might explain the origin of these magmas.
Yet another possibility is that processes related to underthrusting on the Gangdese
Thrust structure, such as dewatering or shear heating, contributed to production of
these ~25 Ma granites.

The two 21 Ma samples from north of Namche Barwa (BT-33, BT-17) along the
Jiali fault zone are distinct from the 24 to 26 Ma group north and west of Gyala Peri,
based on their tectonic setting and geochemistry. These granites might be related to
Miocene shearing as reported for the Red River fault (Schirer and others, 1990, 1994;
Harrison and others, 1992; Leloup and Kienast, 1993; Leloup and others, 1993, 1995).
Although the Red River fault is located considerably southeast of the eastern Hima-
layan syntaxis, it was at that time a left-lateral fault, possibly related to the ductile
sinistral shear seen near Tungmai on the Jiali fault zone. An eastern extension of the
Jiali-Parlung fault is reported to have been dextrally active during ~18 to 12 Ma (Lee
and others, 2003), and perhaps the associated shear produced the 21 Ma granites that
we observe. Common syntectonic emplacement of granitic melts in ductile strike-slip
shear zones can be explained by partial melting of the lower crust, induced by shear
heating in the upper mantle (for example, Leloup and others, 1999). If this is the case,
samples BT-33 and BT-17 represent westward manifestations of the early Miocene
oblique-slip tectonics and shear heating regime more prominent in easterly parts of
the Tibetan-Himalayan orogen.

Another possible cause of Oligo-Miocene igneous activity in southern Tibet
suggested by Yin (2000) is lithospheric-scale rifting, whereby large, deep cracks in the
mantle lithosphere allow asthenosphere to flow upward, providing the necessary heat
for melt production. Alternatively, the ~21 Ma granites could be related to slab
break-off, slab detachment, or a Gangdese Thrust event, similar to the 24 to 26 Ma
granites further southeast.

CONCLUSION

Our U-Pb SHRIMP ages establish a complex tectonic history for southeastern
Tibet, with the presence of at least five magmatic episodes: 400 to 500 Ma, ~120 Ma, 40
to 70 Ma, 18 to 25 Ma, and 3 to 10 Ma. The oldest age group is attributed to early
Paleozoic tectonism. Later melting episodes are primarily related to the Cretaceous-
Tertiary India-Asia convergence and collision, including the subduction of Neo-Tethys
oceanic crust and Gangdese plutonism. Less expected, however, is the widespread
occurrence of 20 to 25 Ma granitoids in the areas surrounding the Namche Barwa
massif. These could be a product of slab break-off, slab delamination, Gangdese
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thrusting, or early Miocene shearing accompanying dextral motion along the Jiali
fault.

The youngest group (3 - 10 Ma) of granitoids, present within the core of the
Namche Barwa massif along and near the Yalu Tsangpo gorge, provides solid evidence
for a tectonic-surficial feedback relationship at Namche Barwa. Geochemical data
indicates the presence of young granites produced by both fluid-absent and fluid-
present melting in the Namche Barwa and adjacent regions, with a decompression
melting regime dominating in the core of the Namche Barwa massif. Taken together,
our geochronologic and geochemical data appear to support a tectonic aneurysm
model for the development of Namche Barwa. Surrounding the Namche Barwa-Gyala
Peri massif, however, granite emplacement results from distinctly different modes of
production. This mode of production reflects the complex deformation at the eastern
edge of the Indian plate, and the recent (Miocene and younger) activity along warped
eastward expressions of dominant Himalayan structures.
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